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GARCH-modelsModelli GARCHGARCH models were introdued by Bollerslev 1986 as extensions of theARCH models to allow for a muh more �exible lag struture.This �exibility is obtained by onsidering the variane of the error termas a funtion of both the previous time errors and variane of theproess and thus, the GARCH(p,q)
σ2
t = ω +

p
∑

j=1

αjǫ
2
t−j +

q
∑

j=1

βjσ
2
t−j .The proess is weakly stationary if and only if

p
∑

j=1

αj +

q
∑

j=1
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GARCH-modelsMoments of Gaussian GARCH(1,1)We ompute the �rst four onditional and unonditional moments of aGARCH(1,1) proess, its auto-orrelation funtion.We onsider the same struture de�ned before and so, for a time series
rt, a GARCH(1,1) model is de�ned as:

rt = ǫtwhere
ǫt|Ft−1 ∼ N(0, σ2

t )and
σ2
t = ω + αǫ2t−1 + βσ2

t−1. (1)The proess is stationary when ω > 0 and α+β < 1. To ensure that theonditional variane is positive we have to impose that α ≥ 0 and β ≥ 0(Lezione 14) ANALISI DELLE SERIE STORICHE April 2015 3 / 17



GARCH-modelsMoments of Gaussian GARCH(1,1)The �rst onditional and unonditional moments are both null
E(rt) = E(E(rt|Ft−1)) = 0the seond unonditional moment is:

σ2 =E(r2t ) = Var(ǫt) = E(ǫ2t ) = E(E(ǫ2t |Ft−1)) =

=E(σ2
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t−1) = ω + αE(ǫ2t−1) + βE(σ2
t−1) =

=ω + ασ2 + βσ2 ⇒ σ2 =
ω

1− α− β
⇐⇒ α+ β < 1
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GARCH-modelsMoments of Gaussian GARCH(1,1)The third unonditional moment of a stationary GARCH(1,1) model is:
E(ǫ3t ) = E(E(ǫ3t |Ft−1)) = 0.The result derives from the result on the third moment of a Gaussiandistribution. To evaluate the fourth unonditional moment we use thefollowing result:

E(ǫ4t |Ft−1) =3E(ǫ2t |Ft−1)
2

= 3V ar(ǫt|Ft−1)
2

= 3(σ2
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2

= 3σ4
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GARCH-modelsThe fourth unonditional moment of a stationary GARCH(1,1) modelis:
µ4 = E(ǫ4t ) = E(E(ǫ4t |Ft−1)) = 3E(σ4

t ) = 3E(ω + αǫ2t−1 + βσ2
t−1)
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GARCH-modelsSine from the previous result we have that
E(σ4

t ) =
E(ǫ4t )

3we get
µ4 = 3ω2 + 3α2µ4 + β2µ4 + 6ωσ2 + 6ωβσ2 + 6αβµ4/3then

µ4(1− 3α2 − β2 − 2αβ) = 3ω2 + 6ωσ2(α+ β)and
µ4 =

3ω2(1 + α+ β)

(1− α− β)(1 − 3α2 − β2 − 2αβ)(Lezione 14) ANALISI DELLE SERIE STORICHE April 2015 7 / 17



GARCH-models
we an alulate the kurtosis index as

Kurt =
µ4

E(ǫ2t )
=

3ω2(1 + α+ β)
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=
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GARCH-modelsIt is possible to show that GARCH(1,1) model an be written as anARMA(1,1) proess
r2t = ω + (α+ β)r2t−1 − βvt−1 + vtwhere vt is a WN with

E(vt) = 0

V ar(vt) =
2(1 + α+ β)

(1− α− β)(1− 3α2 − β2 − 2αβ)

Cov(vt, vt−h) = 0
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GARCH-modelswe now alulate the Cov(ǫ2t , ǫ
2
t−h) starting from the ARMA(1,1)representation of a GARCH(1,1) proess.It is worth noting that the stationary ondition of the GARCH proessi.e. α+ β < 1 oinide with the stationary ondition of its ARMA(1,1)representation. So sine the γ(h) for an ARMA(1,1) proess withautoregression parameter φ, moving average parameter θ and varianeof the error terms σ2 is:

γ(h) = Cov(ǫ2t , ǫ2t−h) =















1 + 2φθ + θ2

1− φ2
σ2 h = 0

φh−1 (φ+ θ)(1 + φθ)

1− φ2
σ2 h > 0
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GARCH-modelsonsidering that in our representation we have:
φ = α+ β;
θ = −β;
σ2 = Var(vt).after some algebra we an write that

γ(h) = Cov(ǫ2t , ǫ2t−h) =
2αω2(1− αβ − β2)

(1− α− β)2(1− 3α2 − β2 − 2αβ)
(α+ β)h−1.to ompute the ACF we have to alulate the Var(ǫ2t ) = E(ǫ4t )− E(ǫ2t ).From previous results we haveVar(ǫ2t ) = 3ω2(1 + α+ β)

(1− α− β)(1− 3α2 − β2 − 2αβ)
−

(

ω

1− α− β

)2
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GARCH-modelswhih after some algebra an be written as:Var(ǫ2t ) = 2ω2(1− 2αβ − β2)

(1− α− β)2(1− 3α2 − β2 − 2αβ)
.Substituting this results in the ACF de�nition we �nally have

ρ(h) =
Cov(ǫ2t , ǫ2t−h)Var(ǫ2t )

=

2αω2(1− αβ − β2)

(1− α− β)2(1− 3α2 − β2 − 2αβ)
(α+ β)h−1

2ω2(1− 2αβ − β2)

(1− α− β)2(1− 3α2 − β2 − 2αβ)and simplifying it leads to
ρ(h) =

α(1 − αβ − β2)

1− 2αβ − β2
(α+ β)h−1.(Lezione 14) ANALISI DELLE SERIE STORICHE April 2015 12 / 17



GARCH-modelsExtensionsClassial GARCH models, rely on modeling the onditional variane asa linear funtion of the squared past innovations. The merits of thisspei�ation are its ability to reprodue several importantharateristis of �nanial time series.From an empirial point of view, however, the lassial GARCHmodeling has an important drawbak. Indeed, by onstrution, theonditional variane only depends on the modulus of the past variables:past positive and negative innovations have the same e�et on theurrent volatility. This property is in ontradition to many empirialstudies on series of stoks, showing a negative orrelation between thesquared urrent innovation and the past innovations. However,onditional asymmetry is a stylized fat: the volatility inrease due to aprie derease is generally stronger than that resulting from a prieinrease of the same magnitude In order to take into aount for thoseonsiderations some extensions of GARCH model have been onsideredin literature.(Lezione 14) ANALISI DELLE SERIE STORICHE April 2015 13 / 17



GARCH-modelsEGARCH(p,q)
rt = ǫtwhere

ǫt|Ft−1i.i.d(0, σ
2
t )and

log(σ2
t ) = ω +
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g(ǫt−i) = θǫt−i + γ(|ǫt−i| − E(|ǫt−i|)
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GARCH-modelsTo better understand the meaning of the funtion g(̇) we an write it as
g(ǫt) =

{

(θ + γ)ǫt − γE(|ǫt|) ǫt ≥ 0

(θ − γ)ǫt − γE(|ǫt|) ǫt ≥ 0whih means that for positive ǫt g(ǫt) is a linear funtion of ǫt withangular oe�ient θ + γ while for negative ǫt is a linear funtion of ǫtwith angular oe�ient θ − γ. In this way the model reats in anasymmetri way to positive and negative news.Moreover it is worth noting that with the EGARCH spei�ation we donot need to impose any restritions on the parameters to onstraint thevariane to be positive. In fat the exponential of any number is alwayspositive.when θ = 0 the reation of log(σ2
t ) to a variation of ǫt is symmetri(Lezione 14) ANALISI DELLE SERIE STORICHE April 2015 15 / 17



GARCH-modelsTGARCH(p,q)This model is alled Treshold GARCH
rt = ǫtwhere

ǫt|Ft−1i.i.d(0, σ
2
t )and
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2
t−j).where IA(x) is the indiator funtion of the set A and the parametersare non negative.(Lezione 14) ANALISI DELLE SERIE STORICHE April 2015 16 / 17



GARCH-models
The model is asymmetri sine when ǫ

t−i
is positive it ontributes with

αi to the volatility while when it is negative it ontributes with αi + γiwhih has a larger impat.The model use zero as threshold to separate the impats of past shoks.Other threshold values an also be used
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